(3x^2)+(10x)=144

Simple and best practice solution for (3x^2)+(10x)=144 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2)+(10x)=144 equation:


Simplifying
(3x2) + (10x) = 144

Reorder the terms:
(10x) + (3x2) = 144

Solving
(10x) + (3x2) = 144

Solving for variable 'x'.

Reorder the terms:
-144 + (10x) + (3x2) = 144 + -144

Combine like terms: 144 + -144 = 0
-144 + (10x) + (3x2) = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-48 + (3.333333333x) + x2 = 0

Move the constant term to the right:

Add '48' to each side of the equation.
-48 + (3.333333333x) + 48 + x2 = 0 + 48

Reorder the terms:
-48 + 48 + (3.333333333x) + x2 = 0 + 48

Combine like terms: -48 + 48 = 0
0 + (3.333333333x) + x2 = 0 + 48
(3.333333333x) + x2 = 0 + 48

Combine like terms: 0 + 48 = 48
(3.333333333x) + x2 = 48

The x term is (3.333333333x).  Take half its coefficient (1.666666667).
Square it (2.777777779) and add it to both sides.

Add '2.777777779' to each side of the equation.
(3.333333333x) + 2.777777779 + x2 = 48 + 2.777777779

Reorder the terms:
2.777777779 + (3.333333333x) + x2 = 48 + 2.777777779

Combine like terms: 48 + 2.777777779 = 50.777777779
2.777777779 + (3.333333333x) + x2 = 50.777777779

Factor a perfect square on the left side:
((x) + 1.666666667)((x) + 1.666666667) = 50.777777779

Calculate the square root of the right side: 7.125852776

Break this problem into two subproblems by setting 
((x) + 1.666666667) equal to 7.125852776 and -7.125852776.

Subproblem 1

(x) + 1.666666667 = 7.125852776 Simplifying (x) + 1.666666667 = 7.125852776 x + 1.666666667 = 7.125852776 Reorder the terms: 1.666666667 + x = 7.125852776 Solving 1.666666667 + x = 7.125852776 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.666666667' to each side of the equation. 1.666666667 + -1.666666667 + x = 7.125852776 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + x = 7.125852776 + -1.666666667 x = 7.125852776 + -1.666666667 Combine like terms: 7.125852776 + -1.666666667 = 5.459186109 x = 5.459186109 Simplifying x = 5.459186109

Subproblem 2

(x) + 1.666666667 = -7.125852776 Simplifying (x) + 1.666666667 = -7.125852776 x + 1.666666667 = -7.125852776 Reorder the terms: 1.666666667 + x = -7.125852776 Solving 1.666666667 + x = -7.125852776 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.666666667' to each side of the equation. 1.666666667 + -1.666666667 + x = -7.125852776 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + x = -7.125852776 + -1.666666667 x = -7.125852776 + -1.666666667 Combine like terms: -7.125852776 + -1.666666667 = -8.792519443 x = -8.792519443 Simplifying x = -8.792519443

Solution

The solution to the problem is based on the solutions from the subproblems. x = {5.459186109, -8.792519443}

See similar equations:

| (-2x^3)(-2x^2)= | | 12m+10n-21=0 | | (-2a^3*1b^2)(-2a^2*1b^3)= | | 4x^2+8x-1=0 | | 0.7x^2+3.7x+1=0 | | 5X^2-32X+36=0 | | N-26=9 | | 26-n=9 | | 12x-4=4x+4 | | 1.5n=75 | | y=-7x+1 | | m-1.8=6 | | 6x+1=4x+3 | | 81=3n | | 0.9-x=1 | | x^3+18x^2+71x+40=0 | | u^2-u-7=0 | | -14=7x | | -15=-5x | | 4X^3-18X^2+16X+3=0 | | -8=x+12 | | 20+8q=-42 | | 21+x=-9 | | -16=x+25 | | x-7.9=3.8 | | 2(x+6)=4x-6 | | n^4+2n^3-n^2-2n=0 | | a-7=-3 | | -7-6=21-2x | | 240=22r+r^2 | | 3(x+5)=x+25 | | 5x+7=x+23 |

Equations solver categories